Children as Policy Pawns

Children as Policy Pawns

Conko and Miller Op-Ed in the Washington Times
October 05, 2003

Americans take nothing as seriously as the need to protect the health and safety of our children.  Public concern about environmental harms has intensified in recent years, and politicians and public health officials have taken notice. Hence, "Children's Health Day," observed on the first Monday of October, which occurs tomorrow. 

Seizing an opportunity to further their own agendas, many radical Non-Governmental Organizations (NGOs) exploit the event by attacking various products and technologies they claim are harmful. 

As in many other public health false alarms, NGO condemnation of the new biotechnology—also known as gene splicing, genetic engineering, or genetic modification (GM)—is less about real concern for children's health than about environmental activists' willingness to exploit children's issues for their own benefit. 

Biotechnology has been the target of scare campaigns since the technique was first demonstrated in 1973.  Activists like Jeremy Rifkin of the Foundation on Economic Trends have warned against supposed dangers of biotechnology for three decades, calling it "the most radical, uncontrolled experiment we've ever seen," even likening it to "Nazi eugenics." 

With varying degrees of subtlety, others such as Greenpeace and the Pew Initiative on Biotechnology and Food have questioned the new biotechnology's safety. Despite an overwhelming scientific consensus that new molecular methods of the "new biotechnology" pose no inherent risks, critics still argue that splicing genes into plants can cause all sorts of human health risks, including the adding new plant toxins or allergens to the food supply. 

The allergy issue is of special concern when children are involved, because children tend to be more sensitive to allergens than are adults.  Approximately 5 percent to 8 percent of children have a true allergy to certain types of foods, but only 1 to 2 percent of adults do. 

Therefore, if gene-splicing really did increase the risk of introducing new allergens into the food supply, this might pose a genuine children's health issue.  How real is this possibility? 

Food allergies are a reaction of the body's immune system to a substance or an ingredient in a food, usually a protein.  And, because the function of most genes is to provide the cellular blueprint for making proteins, it has been easy for activists to convince the uninformed that a real children's health scare is imminent.  But the issue is not so simple. <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

Both conventional and biotech plant breeding involve introducing new genes into established crop plants.  Thus, they both pose a theoretical risk of introducing potentially harmful proteins and other substances into the food supply, some of which could be allergens or toxins.  However, the risk for both types of breeding is generally quite small, and the level of risk an individual plant will pose—either to human health or the environment—has nothing to do with how it was developed.  It depends on the characteristics of the plant being modified and the specific gene or genes added.

In short, using gene-splicing to introduce a new gene into a crop plant has little bearing on whether new allergy issues could arise—except that with gene-splicing techniques, plant breeders actually are less likely to introduce new allergens into the food supply.

Conventional plant breeding involves an essentially random mix of literally tens of thousands of genes from two or more parent plants—any one of which may never before have been part of the human food supply.  Thus, plant breeders generally have little knowledge about which genes combine to create new crop varieties, which gene products are expressed (and at what levels), or which traits may be generated or altered. 

Dozens of new plant varieties produced through imprecise hybridization and other traditional methods of genetic improvement enter the marketplace each year without any governmental review or special labeling.  Many such products are from "wide crosses," hybridizations in which large, sometimes huge, numbers of genes are moved from one species or one genus to another—across "natural breeding barriers"—to create a plant variety that does not and cannot exist in nature. 

For example, Triticum agropyrotriticum is a relatively new man-made "species," which resulted from combining genes from bread wheat and a grass sometimes called quackgrass or couchgrass. Possessing all the chromosomes of wheat and one extra whole genome from the quackgrass, T. agropyrotriticum has been independently produced in <?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />Europe, Canada, the United States and China, and has been grown for both animal feed and human food. 

Various problems could arise from such a genetic construction that introduces tens of thousands of foreign genes into an established plant variety. For example, the new genes could increase the weediness of the plant in fields, or proteins derived from the quackgrass genes could be toxic or allergenic to consumers. 

However, neither regulators nor activists have evinced any concern about these possibilities. Instead of focusing regulatory attention on such risk-related issues, they have concentrated solely on gene-spliced plants, about which plant biologists and breeders invariably know considerably more—for example, exactly which new genes are being added into an existing plant line, and what proteins will be synthesized by those genes.

Paradoxically, only the more precisely crafted, gene-spliced crops are exhaustively, repeatedly (and expensively) reviewed before they can enter the field or food supply. If those supposedly concerned about risk were crafting regulatory approaches logically, the balance of scientific certainty and uncertainty would dictate greater precaution not only on gene splicing but the cruder, less precise, less predictable "conventional" forms of genetic modification. 

Ironically, one of the most noteworthy potential advantages of biotechnology is to eliminate existing allergens from foods like peanuts, wheat and milk by "silencing," or turning off, the genes generating allergenic proteins.

The new biotech's greatest contribution to children, however, will likely be via the nutritional benefits of gene-spliced plants.  For example, the diet of more than 200 million children worldwide includes inadequate levels of many important nutrients such as vitamin A, whose deficiency results in impaired intellectual development, blindness and even death. Each year, approximately 2 million children die from a severe lack of vitamin A.

A new, gene-spliced rice variety enhances levels of beta carotene, which is then converted in the human body to vitamin A. This "Golden Rice" could prevent as many as a million deaths yearly.  

Despite significant and real benefits of gene-spliced foods, the anti-biotechnology "kid campaign" has borne fruit for environmentalists in a way that other forms of activism could not.

The public is confused, and most regulatory agencies treat gene-spliced foods and crop plants in a discriminatory, unnecessarily burdensome way.  They have imposed costly, time-consuming and impossible requirements for conventionally bred plants. Use of the new biotechnology, which holds so much promise for children's health, is held hostage by a perverse campaign exploiting kids for political gain.