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Executive Summary

Global demands on agriculture are certain to increase in tandem with in-
creasing world population, living standards and longevity, particularly among 
developing countries. With limited arable land, innovative techniques will be 
required to improve the efficiency of the global agriculture sector to ensure an 
ample supply of healthful food. Biotechnology offers the most efficient, cost-
effective means of raising agricultural productivity worldwide.

 As long ago as 1987, an analysis published by the National Academy of 
Sciences (USA) examined the available literature and concluded that plants 
and other organisms produced using genetic engineering techniques posed 
no new or different risks to human health or the environment than those 
produced using other breeding methods. Since then, the same conclusion 
has been reached by a number of other respected scientific organizations. 
Research has shown the insertion of transgenes (i.e., genes from another 
source) produces less unintended DNA modification than classical plant 
breeding methods. The consensus of scientific opinion is that the applica-
tion of genetic modification technology introduces no unique food safety or 
environmental impact concerns and that there is no evidence of harm from 
those products that have been through a regulatory approval process.

The U.S. National Research Council in 2000 determined that no difference 
exists between crops modified through modern molecular techniques and 
those modified by conventional breeding practices. The NRC emphasized that 
the authors were not aware of any evidence suggesting foods on the market 
today are unsafe to eat because of genetic modification. In fact, the scientific 
panel concluded that growing such crops could have environmental advan-
tages over other crops.

The very first commercial approval of a biotech crop was granted in 1993. 
Biotech crops are now grown on roughly 10 percent of global cropland, even 
though the cultivation of biotech crops is banned in most countries. The 
first biotechnology products commercialized in agriculture were crops with 
improved agronomic traits (primarily pest and disease resistance and herbi-
cide tolerance) whose value was unclear to consumers. Currently under de-
velopment are crops with a more diverse set of new traits that can be grouped 
into four broad areas: 1) improvement of agronomic traits (e.g., increased 
yield, and resistance to climate or soil aberrancies); 2) crop plants for use as 
biomass feedstocks for biofuels; 3) the introduction of value-added traits, 
such as improved nutrition, of special importance to those populations often 
suffering from malnutrition; and 4) the use of plants as production factories 
for therapeutics and industrial products. 

Executive Summary
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Two of the biggest impediments to the use of biotechnology in agriculture 
are governmental biosafety rules and adverse public opinion. Therefore, the 
actual commercialization of biotech products in the future may have less 
to do with technical challenges and more to do with external constraints, 
primarily overly stringent regulatory approval standards based on a hazard, 
or precautionary standard, rather than on a risk-based evaluation. 

Introduction
In the latter half of the 20th century, major strides were made in agri-

cultural productivity, helping to quadruple annual agricultural production 
worldwide. Among the factors contributing to the gains were the intensive 
use of chemical fertilizers, pesticides, and herbicides, the availability of new 
agricultural equipment, better irrigation, and selective breeding programs. 
Interestingly, the selective breeding of crop plants and farm animals is far 
from new. Agriculturalists over the millennia have employed crossbreed-
ing, mutation selection, and the culling out of undesirable characteristics to 
modify animals and plants (Chrispeels and Sadava, 2003). 

All of these breeding methods depend on the selection of novel traits that 
arise from a variety of DNA mutations. That is to say, the desired novel traits 
are the result of genetic changes. Thus, from a scientific perspective, the 
term “genetically modified organism” need not apply solely to the products 
of modern biotechnology, as virtually all domesticated crops and animals 
have been subjected to varying degrees of genetic modification. Plant and 
animal breeders – especially in the last century – expanded the tools of 
genetic manipulation beyond conventional crossbreeding to use a number of 
other techniques. In the case of plants, chromosome doubling and mutation 
breeding were achieved through the use of radiation or chemicals (Chrispeels 
and Sadava, 2003). And a variety of other sophisticated laboratory methods 
have been used to change plants in ways that do not occur in nature.”

Crops developed using such methods are now common throughout the 
food chain. Seedless varieties of banana and watermelon, for example, were 
developed by tripling the number of chromosomes. Bread wheat, developed 
thousands of years ago, is called an allopolyploid plant because it contains 
six entire sets of chromosomes from three different species. Broccoflower 
was developed using a technique known as embryo rescue, and male steril-
ity in cauliflower was produced by fusing together radish and cauliflower 
protoplasts (i.e., cells with their cell walls removed to enable the passage of 
DNA). Many common tomato varieties are the result of wide crosses between 
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domesticated tomato and its wild relatives, which contain high levels of poi-
sonous glycoalkaloid toxins. Common varieties of Asian pear and grapefruit 
were developed with irradiation, or mutation breeding, for fungal resistance, 
and the same techniques were used to modify starch in durum pasta wheat 
(Newell-McGloughlin, 2008). Innovations such as these have been essential 
for sustaining and enhancing agricultural productivity over the decades.

Historically, agriculturists and plant breeders selected improved crops 
based on changes that arose as a result of genetic modification of DNA (i.e., 
naturally occurring mutations) without any knowledge of the nature of the 
molecular modifications that had occurred in the DNA, or the resulting 
changes in the content of proteins and metabolites in newly selected varieties. 
Insight into the molecular changes that occur as a result of plant breeding has 
emerged with the introduction of high throughput DNA sequencing, coupled 
with improved methods for evaluating the proteome (i.e., the full complement 
of proteins that occur within a cell, tissue, or organism) and metabolome 
(i.e., the full complement of metabolites, or chemical substances, within a 
biological sample) of crop plants. The kinds of DNA modifications associated 
with classical plant breeding and transgene insertion have been assessed and 
compared (Parrott, 2005; Parrott et al., 2010; Weber et al., 2012). 

A significant body of evidence now demonstrates that all forms of plant 
breeding introduce a variety of changes in DNA, ranging from point muta-
tions and single base pair deletions and insertions to loss or acquisition of 
genes and changes in numbers of whole chromosomes. Of particular impor-
tance, transgene insertion (what we now call genetic modification or modern 
biotechnology) has been observed to produce less unintended DNA modifica-
tion when compared to classical plant breeding methods. Studies also have 
shown that transgenic crop varieties more closely resemble their parental 
lines than do other varieties of the same crop with respect to their genome’s 
protein products and metabolites (i.e., their proteomic and metabolomics 
profiles), and how these interact to determine biological functions. (Ricroch 
et al., 2011). Given the substantial and unpredictable genetic modifications in 
crop plants common in the human diet, the comparatively simple and more 
precise modifications performed with recombinant DNA techniques appear to 
be unique only in the breeder’s improved ability to control the results.
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What is Biotechnology?
In the simplest and broadest sense, biotechnology (also known as modern 

biotechnology, or new biotechnology) is a series of enabling technologies that 
involve the manipulation of living organisms, or their sub-cellular compo-
nents, to develop useful products and processes. The capacity to manipulate 
the genetic makeup of living organisms with precision has become one of the 
cornerstones of modern biotechnology. It enables developers to enhance the 
ability of an organism to produce a particular chemical product (e.g., penicil-
lin from a fungus), to prevent it from producing a product (e.g., ethylene in 
plant cells), or to enable it to produce an entirely new product (e.g., chymosin 
in microorganisms).

Biotechnology has introduced a new dimension to selective breeding, 
offering a number of efficient, cost-effective means to improve crops. Such 
transgenic crops are often referred to as “genetically modified organisms,” or 
GMOs. We will refer to them as “genetically engineered,” or GE, organisms. 
Biotechnology has the potential to improve both the qualitative and quantita-
tive aspects of food, feed, and fiber production. In time, it also may reduce 
agriculture’s dependency on chemicals by transitioning to new biological 
solutions and thus moderate raw-material costs all in an environmentally 
sustainable manner. 

It is further possible to enhance the nutritional content, texture, color, 
flavor, growing season (i.e., time to flowering), yield, disease and pest resis-
tance, and other properties of production crops. Transgenic techniques can be 
applied to farm animals to improve their growth, fitness and other qualities. 
Enzymes produced using recombinant DNA methods (in microorganisms/
bacteria and yeasts/fungi, etc.) are used to make cheese, keep bread fresh, 
produce fruit juices and wines, and treat fabric for blue jeans and other denim 
clothing. Other recombinant DNA enzymes are used in laundry detergents. 
Recombinant microorganisms can be engineered to improve environmental 
quality, too. Bioprocessing using engineered microbes offers new ways to 
treat waste. And, in a process known as bioremediation, naturally occurring 
microorganisms are being used to treat organic and inorganic contaminants 
in soil, groundwater, and air. 
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Proliferation of Biotech Products

Proliferation of Biotech Products
The very first commercial approval of a biotech crop  — Celgene’s Flavr-

Savr tomato — was granted in 1993. Biotech crops are now grown on roughly 
10 percent of global cropland (James, 2013), even though the cultivation of 
biotech crops is banned in most countries based upon political/precaution-
ary reasons rather than scientific evidence. The first biotechnology products 
commercialized in agriculture were crops with improved agronomic traits, 
primarily pest and disease resistance and herbicide tolerance. And the 
benefits of biotechnology to agriculture are bound to grow in importance 
as the world’s population expands from the current 7 billion to a forecast 9 
billion by 2050. According to some estimates, agricultural production over 
the next 25 years will have to double just to keep pace with rising demand. 

Modifications of crop plants can be organized into two broad, non-exclu-
sive categories: those that benefit the producer through introduction of such 
properties as improved insect, weed, and disease management, and lower 
input costs; and those that benefit the consumer more directly, with increased 
nutritional value, flavor, or other desirable product attributes. Many plants 
also deliver benefits for the environment, such as reducing insecticide use and 
hastening an ongoing shift to conservation tillage practices. Modifications 
that increase total crop yield or protect a crop from either biotic stress (i.e., 
damage by predators, such as insects, weeds, or disease agents, including 
viruses, fungi, and bacteria) or abiotic stress (i.e., damage from other causes, 
such as drought, flooding, cold, heat, salination, or poor soil) primarily benefit 
the producer and are often called “input traits.” Researchers have only begun 
to tap the potential of biotechnology to produce varieties of plants that confer 
direct advantages for consumers in their consumption. Varieties modified to 
have greater appeal to consumers are said to have enhanced “output traits.” The 
majority of biotech crops in commercial use today fall into the input category. 

Among the plant varieties currently marketed, the most common traits 
are insect resistance, herbicide tolerance, and virus resistance. The pest-re-
sistance trait was added by inserting a gene from the common soil bacterium 
Bacillus thuringiensis (Bt), which produces an insoluble crystalline protein 
that adheres to and degrades the alkaline stomach of only one or a very few 
species of insect larvae.

Tolerance to a different herbicides is another sought-after trait. Weeds 
compete with crop plants for sunlight, water, and soil nutrients, and if not 
eliminated, they can lead to significant yield losses. Consequently, effective weed 
management is essential to production-scale agriculture. With herbicide-tolerant 
crops, growers can spray a broad-spectrum herbicide on their fields, effectively 
managing all or most weed species, while leaving the crop plants unharmed. The 
last major class of biotech traits now on the market is virus resistance. 
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The plant species most widely adopted with gene-splicing methods (that is, 
the process in which fragments of DNA from one or more different organisms 
are combined to form recombinant DNA and are made to function within the 
cells of a host organism) are the commodities corn, cotton, soy, and canola. 
U.S. farmers grow each of these crops and also have planted a significant 
number of acres with biotech varieties of sugar beet and alfalfa, while a far 
smaller number of acres have been planted with biotech squash, papaya, and 
rice. Rice is the principal staple for much of the world, and corn is the largest 
animal feed source, so rising productivity in those two crops globally will have 
important impacts on long-term food security. 

The United States has the largest number of approved and commercially 
planted biotech varieties. The primary federal body in charge of regulating 
biotech plants, the U.S. Department of Agriculture, has approved (or, in 
agency parlance, “deregulated”) more than 90 “transformation events” (i.e., 
organisms resulting from transgene insertions) of 16 plant species for com-
mercial-scale cultivation, though many of these products, while legal to grow 
and sell, are not commercially available. While scores of countries still forbid 
the planting of any GE crop (Paarlberg 2001, 2010), there is movement toward 
wider acceptance. The first GE crop to be released for commercial cultivation 
in India was Bt cotton, for instance. China, too, has begun to set the pace for 
new approvals, becoming the first major rice-producing country to approve a 
GE rice variety and granting initial approval for a maize variety engineered to 
reduce the amount of phosphate in the waste from corn-fed livestock. 

Where GE crops have become available, many farmers have eagerly 
planted the new varieties. By some estimates, biotech crops have been the 
most rapidly adopted agricultural technology in history. U.S. farmers grow 
the largest number of acres (over 150 million) planted with biotech varieties, 
accounting for about 43 percent of the total acreage worldwide. The U.S. is 
followed in terms of acreage by Brazil (67m), Argentina (53m), India (23m), 
and Canada (23m).  Twenty-nine countries now plant genetically-engineered 
crops (James 2013). Twenty of the 29 nations are less developed countries 
(LDCs), and 90 percent of the farmers, or about 15.6 million, are in LDCs 
(James, 2012). The most recent countries to join this group include Uruguay, 
Paraguay, Bolivia, Egypt, Burkina Faso, Pakistan, and Myanmar (Burma). In 
2010, Germany resumed the legal planting of biotech crops after withdraw-
ing authorization several years earlier; the European Union, however, has 
approved only a small number of GE varieties for import, and even fewer are 
actually allowed to be grown there. An additional 31 countries have permitted 
pre-commercial field trials of biotech crop varieties, or have approved some 
harvested biotech plants to be imported for use as food and livestock feed. 
Nonetheless, a majority of countries continue to prohibit transgenic crops  
and GE food imports.
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A Distinction Without a Difference
All new varieties of crops are the result of genetic modification regardless 

of the technology used for their development. To date, new crop varieties 
have been almost without exception safe to plant and safe to consume. The 
small number of documented cases in which a new variety was found to be 
unsafe for consumers were all the products of classical breeding methods 
(NRC 2004). Nevertheless, new varieties have proven so comparatively safe 
that non-biotech ones are released to farmers with essentially no oversight by 
regulators and, with very few exceptions, no requirements for safety testing. 
Crops produced using modern biotechnology are, however, all subject to 
special regulation with associated significant cost implications. 

Aspects of the regulatory framework in every country that permits the 
commercial use of biotech crops, or food and animal feeds derived from 
them, are premised on the belief that unique risks arise from the transforma-
tion process itself. Each time a gene is introduced into a plant, the resulting 
organism (or transformation event) is treated as a unique product for the 
purposes of regulation. Even if copies of a single gene encoding the same 
protein are inserted into different plants of the same species, each resulting 
transformation event must be tested and approved separately. There is no 
evidence, however, that the uncertainties associated with trans-
gene insertion are any greater than those that occur with other 
forms of genetic modification, such as the random genetic changes 
that result from mutation breeding.

Critics of transgenic crops claim the use of modern biotechnology in 
agriculture is intrinsically unsafe. But such criticism is based on a major mis-
understanding. The critics accept as a given the safety of new crops developed 
in the customary manner. Yet traditional selective breeding methods depend 
on novel genetic traits that arise from DNA mutations. Plants created by 
these conventional phenotypic selection techniques undergo no formal food 
or environmental safety evaluation other than normal agricultural variety 
testing prior to introduction into the environment or marketplace. This is not 
to suggest that classical breeding methods are inherently unsafe. What it does 
suggest is that the contrasting regulatory treatment of these two classes of 
plants is arbitrary, merely adding a needless, burdensome obstacle to innova-
tion while adding tremendously to their costs. 

 As long ago as 1987, an analysis published by the National Academy of 
Sciences (USA) examined the available research and concluded that plants and 
other organisms produced using genetic engineering techniques pose no new or 
different risks to human health or the environment than those produced using 
other breeding methods (NAS, 1987). Since that time, the National Academies, 
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the European Union, and the governments of a number of other countries have 
reviewed the scientific literature and reached the same conclusion. 

Transgenic crops produced using the new biotechnology are nonetheless 
regulated by governments and may not be released to farmers or consumers 
until they have successfully passed a rigorous pre-market safety assessment 
(Kok and Kuiper, 2003; König et al., 2004; Codex, 2003). On a case-by-case 
basis, the safety assessor seeks to determine if the new trait introduced into a 
crop is cause for safety concerns. In principle, the focus of regulators is on the 
safety of the new trait and not on the fact that genetic engineering has been 
used to introduce the new trait. Yet, paradoxically, crops developed using less 
precise and more disruptive methods of breeding may be released without any 
pre-market regulatory review. 

It is commonly believed that transgenic crops should be regulated because 
they express novel traits not normally associated with that crop, typically not 
part of the human or animal diet. When a genuinely novel substance (e.g., 
a new protein or other phytochemical) is introduced into a plant, this does 
merit special testing to ensure safety. But most of the traits introduced into 
biotech crops can also be introduced with various classical breeding methods. 
Moreover, classical breeding methods, such as interspecies and intergen-
era “wide cross” hybridization, frequently introduced new genes and gene 
products into the human diet. Thus, not all biotech plant varieties contain 
genes or proteins new to the food supply, neither is the introduction of novel 
substances unique to transgenic breeding methods.

It bears repeating that the only scientific justification for pre-market safety 
assessment for any new plant variety is to establish the safety of any newly 
introduced substances. It is an unfortunate reality that pre-market safety 
assessment has become an endless search for unintended effects. Consider 
what happened in the Philippines. The biotech crop at issue was none other 
than the flagship of improved nutritional varieties: beta carotene-enhanced 
rice, commonly referred to as “golden rice.” Authorities in the Philippines had 
under consideration since the late 1990s an application to plant golden rice. 
Yet, despite numerous risk assessments, the modified crop did not win gov-
ernmental approval until February 2013. The developer, Ingo Potrykus — who 
with his colleagues was working for a publicly-funded research institute — 
lays the blame largely on the regulatory process, which he considers excessive, 
and he pointedly observes that similar legal requirements in many countries 
are preventing genetically engineered crops from saving millions from starva-
tion and malnutrition.
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No Evidence of Harm
The consensus of scientific opinion and evidence is that the application of 

GE technology introduces no unique food or feed safety concerns or environ-
mental impacts and that there is no evidence of harm from those products 
that have been through a regulatory approval process. This conclusion has 
been reached by numerous national and international bodies, including the 
Food and Agriculture Organization of the United Nations, the World Health 
Organization, the Organization for Economic Cooperation and Development, 
the European Commission, the French Academy of Sciences, the U.S. National 
Research Council of the National Academy of Sciences, the Royal Society of 
London, and the Society of Toxicology. 

Take the U.S. National Research Council, for instance. In its report 
“Genetically Modified Pest-Protected Plants: Science and Regulation” (NRC, 
2000), it determined that no difference exists between crops modified 
through modern molecular techniques and those modified by conventional 
breeding practices. The NRC emphasized that the authors were not aware of 
any evidence suggesting foods on the market today are unsafe to eat because 
of genetic modification. In fact, the scientific panel concluded that growing 
such crops could have environmental advantages over other crops. In a 2003 
position paper, the Society of Toxicology (SOT, 2003) corroborated this finding 
and noted that there is no reason to suppose that the process of food produc-
tion through biotechnology leads to risks of a different nature than those 
already familiar to toxicologists or to risks generated by conventional breeding 
practices for plant, animal or microbial improvement. It is therefore important 
to recognize that it is the food product itself, rather than the process through 
which it is made, that should be the focus of attention in assessing safety. 

Similarly, a European Commission report (EU, 2001, 2008) that sum-
marized biosafety research of 400 scientific teams from all parts of Europe 
conducted over 15 years stated that research on GE plants and derived products 
so far developed and marketed, following usual risk assessment procedures, has 
not shown any new risks to human health or the environment beyond the usual 
uncertainties of conventional plant breeding. Indeed, the use of more precise 
technology and the close regulatory scrutiny probably make GE plants even 
safer than conventional plants and foods. More recently, EU-funded research 
from 130 projects involving 500 independent research groups over 25 years 
concluded, “There is, as of today, no scientific evidence associating GMOs with 
higher risks for the environment or for food and feed safety than conventional 
plants and organisms” (Europa Press Release, 2010). What is more, the lack 
of any credible reports of adverse effects resulting from the production and 
consumption of GE crops grown on more than 235 million cumulative hectares 
over the last seven years further supports these safety conclusions. 
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Biosafety Testing
In contrast to traditionally bred crops, a rigorous safety-testing paradigm 

has been developed and implemented for GM crops (Cockburn, 2002; Kok 
and Kuiper, 2003; König et al., 2004). The science-based process focuses 
on a classical evaluation of the toxic potential of the introduced novel gene, 
its gene product, and the wholesomeness for human consumption of the GE 
crop. In addition, detailed consideration is given to the history and safe use of 
the parent crop, as well as that of the gene donor(s). The overall safety evalua-
tion is conducted using a process known as “substantial equivalence,” a model 
that is entrenched in all international crop biotechnology guidelines (Kok 
and Kuiper, 2003; Codex, 2003). The paradigm provides the framework for a 
comparative approach to identify the similarities and differences between the 
GE product and an appropriate comparator that has a known history of safe 
use. The information is used to reach a conclusion about whether food or feed 
derived from the GE crop is as safe as food or feed derived from its traditional 
counterpart or the appropriate comparator.

Substantial equivalence is only one in an array of principles employed in 
the international consensus approach to safety assessment of transgenic crops 
(Chassy et al., 2004; Chassy et al., 2008; Ricroch et al., 2011). Other govern-
ing principles are listed below:

 □ Potential gene transfer: Where there is a possibility that selective 
advantage may be given to an undesirable trait from a food safety perspec-
tive, this should be assessed. An example is in the highly unlikely event of 
a gene coding for a plant-made pharmaceutical being transferred to a food 
crop (e.g., corn). Where there is a possibility that the introduced gene(s) 
may be transferred to other crops, the potential environmental impact of 
the introduced gene and any conferred trait must be assessed.

 □ Potential allergenicity: Since most food allergens are proteins, the 
potential allergenicity of newly expressed proteins in food must be con-
sidered. The starting point of this decision-tree approach, first introduced 
in 1996, is the known allergenic properties of the donor (gene-source) 
organism. Other recurrent items in this approach are structural similarities 
between the introduced protein and allergenic proteins, digestibility of the 
newly introduced protein(s), and if needed, immunological assays known 
as sera-binding tests.

 □ Potential toxicity: Some proteins are known to be toxic (e.g., entero-
toxins from pathogenic bacteria and lectins from plants). Tests for toxicity 
include comparisons of amino acid sequences of any newly expressed 
protein(s) with the amino acid sequences of known toxins, as well as 
rodent toxicity tests with acute administration of the proteins. 

6
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GE Food Labeling

 □ Unintended effects: Interactions of the inserted DNA sequence with the 
plant genome are possible sources of unintended effects. Another source 
might be the introduced trait unexpectedly altering plant metabolism. The 
process of product development that selects a single commercial product 
from hundreds to thousands of initial transformation events eliminates the 
vast majority of situations that might have resulted in unintended changes. 
The selected commercial product candidate then undergoes additional 
detailed analyses to further screen for unwanted effects.

 □ Long-term effects: It is acknowledged that the pre-market safety 
assessment should be rigorous to exclude potentially adverse effects of 
consumption of foods or feeds derived from GE crops. Nevertheless, some 
have insisted that such foods should also be monitored for long-term 
effects by post-market surveillance. No international consensus exists as 
to whether such surveillance studies are technically possible without a 
testable hypothesis in order to provide meaningful information regarding 
safety, and a GE crop with a testable safety concern would most likely not 
pass regulatory review. 

GE Food Labeling
The question of whether foods derived from organisms modified with 

recombinant DNA techniques should be specially labeled has received a great 
deal of attention. The U.S. Food and Drug Administration’s (FDA, 1992) 
approach to the labeling of foods, including those genetically engineered or 
otherwise novel, is that the label must be accurate and “material.” Agency of-
ficials recognize that any breeding method could impart a change that makes 
food less safe or nutritious than its conventional counterpart but that the 
process of recombinant DNA (rDNA) modification, in which a DNA molecule 
is formed by joining DNA segments from different sources, is not inherently 
risky. Accordingly, special labeling is required “if a food derived from a new 
plant variety differs from its traditional counterpart such that the common 
or usual name no longer applies, or if a safety or usage issue exists to which 
consumers must be alerted.”

Such changes include the introduction of a toxin, anti-nutrient, or allergen 
into a food product in which consumers would not ordinarily expect to find it 
(e.g., an allergenic protein from nuts in corn), the elevation of an endogenous 
substance to potentially harmful levels (e.g., a significant increase in potato or 
tomato glycoalkaloids), or a significant change in the level of dietary nutri-
ents in a food (e.g., oranges with abnormally low levels of vitamin C). Other 
material changes that must be labeled include those that relate to the storage, 
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preparation, or usage characteristics of a food, such as a change affecting the 
length of time or manner in which kidney beans must be soaked and cooked 
before eating, or the safe shelf-life of various food products. Even a change in 
organoleptic (sensory) characteristics of a food from what consumers would 
normally expect, including the taste, smell, or mouth feel of a food, is consid-
ered material and must be labeled. Importantly, the FDA’s policy stipulates 
that the altered characteristic itself must be specified on the label, not the 
breeding method used to impart the change. 

The FDA also emphasizes that no pre-market review or approval is 
required unless characteristics of the biotech food explicitly raise safety 
issues. Indeed, the FDA cannot require the labeling to make mention of the 
genetic method used in the development of a new plant variety. Obviously, 
many of the novel nutritionally enhanced foods expected on the market in 
the next few years will be labeled, as they will differ from their traditional 
counterparts, and in most instances marketers will want to proclaim the new 
product’s enhanced nutritional value.

Barriers to Biotechnology
Biotech crop developers, seed breeders, and farmers face a number of 

hurdles when introducing new varieties. Although transgenic crops are grown 
in 29 countries, the technology has met stiff resistance from some consum-
ers, producers, non-governmental organizations (NGOs), and regulators. 
Many countries ban both the cultivation of GE crops and the import of food 
or animal feeds derived from them. Yet, even in the countries where GE 
crops are grown, such as the United States and Canada, the vast majority of 
production is limited to cotton and commodity grains (e.g., corn, canola, and 
soy) that are primarily fed to livestock or consumed by humans only after 
processing. Despite the significant economic benefit reaped by producers of 
GE commodity crops, very few GE varieties of whole fruits or vegetables are 
grown commercially. The explanation for this phenomenon is complex and 
multifaceted, but consumer attitudes, food industry ambivalence, production 
costs, regulatory impediments, and market access all play a role.

U.S. consumer attitudes tend to be mixed on food biotechnology. An 
International Food Information Council Survey in 2012 found that 38 percent 
of respondents held a favorable opinion of using biotechnology to produce 
food, while 20 percent had a negative opinion. Still, 77 percent said they 
would be likely to purchase foods bioengineered to require less pesticide use, 
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and 71 percent said they would buy foods made with cooking oils modified to 
have a healthier fat content. Outside the U.S., public attitudes vary widely, 
with consumers in Europe expressing the most significant opposition to GE 
products. Perhaps more important, a general lack of knowledge about GE 
foods means few consumers are aware of the benefits of these products.

A bigger problem than consumer resistance is the rejection of biotech 
foods by producers and retailers. A small but important segment of the 
public holds very passionate anti-biotechnology attitudes. In response, many 
packaged-food companies and food retailers have been reluctant to embrace 
GE products. With anti-biotechnology campaigners eager to protest against 
supermarket chains and food processing companies who use bioengineered 
ingredients, it is understandable that few firms are willing to put their hard-
earned reputations at risk. And the bigger the companies, the less willing they 
seem to be to use biotechnology (Kalaitzandonakes and Bijman, 2003).

Regulations pose even greater difficulties. In the U.S., regulatory com-
pliance adds at least $1 million to the cost of developing a GE variety for 
each transformation event (Redenbaugh and McHughen, 2004). For crops 
intended for international commerce, the regulatory costs in key produc-
ing and importing countries have been estimated to range from $6 million 
to $15 million (Kalaitzandonakes et al., 2007) and as high as $35 million 
(McDougall, 2011). Unjustifiably burdensome rules add little to environmen-
tal and human health protection and, arguably, do more harm than good, 
especially in less developed countries. Complicating matters further is the 
highly charged political environment in which biosafety regulatory decisions 
are made. 
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Conclusion
The United Nations’ Food and Agriculture Organization (FAO) estimates 

that about one billion people worldwide suffer from under-nutrition, to which 
insufficient protein in the diet is a significant contributing factor (FAO, 2012). 
Protein-energy malnutrition (PEM) is the most lethal form of malnutrition 
and affects every fourth child worldwide (WHO, 2006). Biotech crops could 
potentially do much to relieve the problem of under-nutrition. Plant-based 
products comprise the vast majority of human food intake, irrespective of 
location or financial status (Mathers, 2006). Indeed, in some cultures, either 
by design or default, plant-based nutrition comprises almost 100 percent 
of the diet. Given this fact, it can be deduced that significant nutritional 
improvement could be achieved via modifications of staple crops to deliver 
higher micronutrient levels. 

There are no alternative technologies available to plant breeders with 
which needed phenotypes — new improved varieties — can be created, none 
which can overcome the physiological and environmental limitations of global 
agriculture to produce sufficient food, feed, fuel, and fiber on the available 
arable land to meet increasing demand (i.e., sustainable intensification). 
The scientific hurdles to achieving these goals are not trivial – particularly as 
researchers strive to modify qualitative, as opposed to quantitative, traits and 
alter intricate metabolic pathways and networks, as opposed to single genes. 
However, the tools now coming on line in the fields of genomics, proteomics, 
and the like are bound to offer solutions.

Non-technical factors pose different challenges. Among these are intellec-
tual property restrictions, liability concerns, prohibitive biosafety rules, and 
public acceptance. The last two in many ways are the most insidious of limita-
tions on biotechnology as they have little basis in fact and thus are difficult 
to refute effectively. It is easier to appeal to emotion and sell fear than it is 
to present a reasoned and judicious scientific rationale on which to base risk 
analysis. Looking forward, the actual commercialization of biotech products 
may have less to do with technical limitations and more to do with external 
constraints, primarily the process of regulatory approval. 
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New and innovative techniques will be required to improve the 
production and efficiency of the global agriculture sector to ensure an ample 
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poorer countries. 
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